

비정형 환경 내 지도 작성과 자율주행을 위한 GNSS-라이다-관성 상태 추정 시스템

Tightly-Coupled GNSS-LiDAR-Inertial State Estimator for Mapping and Autonomous Driving

길현재1·이동재1·송관형1·안승욱2·김아영1

¹ Seoul National University, ² Hanwha Aerospace

Motivation

Hardware

Why use GNSS (Global Navigation Satellite System) with LIO (LiDAR-Inertial Odometry)?

GNSS provide absolute position, which can allevate long-term drift of state estimator. \bullet

Why tightly-coupled GNSS factor?

- GNSS PVT fix position have high uncertainty in z-axis.
- LIO state estimator cannot minimize z-axis error with loosely-coupled approach. \bullet
- Tightly-coupling raw GNSS measurements ullet
 - \rightarrow mitigate slowly-drifting z-axis error by jointly optimizing a factor graph.

Why should we handle NLOS (Non-Line-of-sight) signal?

- NLOS satellites can affect the accuracy of raw GNSS pseudorange measurement. \bullet
- With accurate LiDAR pointcloud submap, we can check if the measurement is in NLOS. \bullet
- **GNSS-LiDAR-Inertial system** mounted on UGV.
- Tested autonomous driving with estimated states. (video QR \rightarrow)

Clock bias factor

Clock bias rate factor

Method

Prior pose factor

LiDAR odometry factor IMU preintegration factor Code pseudorange factor Doppler shift factor

- Used GNSS raw measurement factors + clock factors with LiDAR, IMU factors \bullet
- Sliding window-based 3-step coarse-to-fine GNSS initialization \bullet

- Detect NLOS satellites using LiDAR pointcloud submap •
- Weight the measurement based on the pointcloud density

Result (Public Dataset)

TST sequence of UrbanNav [2] Dataset

Result (Acquired Dataset)

Sequence 1

Sequence 2

Sequence 3

Sequence 4

	LIO-SAM	GLIO-LOS	GLIO-NLOS
Mean	4.286	5.739	3.227
Median	3.650	3.628	2.787
RMSE	4.916	7.226	3.669

Handling NLOS signal yields the best ATE

Reference

[1] T. Shan, B. Englot, et al. "LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping," *IEEE International Workshop on Intelligent Robots and Systems (IROS)*, Las Vegas, USA, 2020.

[2] L.-T. Hsu, et al. "UrbanNav: An Open-Sourced Multisensory Dataset for Benchmarking Positioning Algorithms Designed for Urban Areas," The 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), pp. 226-256, 2021